Autonomous Navigation for Flying Robots

Dr. Jürgen Sturm and Dr. Daniel Cremers

Technische Universität München

In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote visual inspection of industrial sites to automatic 3D reconstruction of buildings. Navigating a quadrotor manually requires a skilled pilot and constant concentration. Therefore, there is a strong scientific interest to develop solutions that enable quadrotors to fly autonomously and without constant human supervision. This is a challenging research problem because the payload of a quadrotor is uttermost constrained and so both the quality of the onboard sensors and the available computing power is strongly limited.

In this course, we will introduce the basic concepts for autonomous navigation for quadrotors. The following topics will be covered:

3D geometry,
probabilistic state estimation,
visual odometry, SLAM, 3D mapping,
linear control.

In particular, you will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory.

The course consists of a series of weekly lecture videos that we be interleaved by interactive quizzes and hands-on programming tasks. For the flight experiments, we provide a browser-based quadrotor simulator which requires the students to write small code snippets in Python.

This course is intended for undergraduate and graduate students in computer science, electrical engineering or mechanical engineering. This course has been offered by TUM for the first time in summer term 2014 on EdX with more than 20.000 registered students of which 1400 passed examination. The MOOC is based on the previous TUM lecture “Visual Navigation for Flying Robots” which received the TUM TeachInf best lecture award in 2012 and 2013.

Ключевые слова

quadrotors, autonomous navigation, robots

Характеристики курса

Направление в конкурсе
Естественные и технические науки
Вид образования
Язык обучения
Инженерные, обрабатывающие и строительные отрасли, Информационно-коммуникационные технологии (ИКТ)
Авторы курса
Dr. Jürgen Sturm and Dr. Daniel Cremers
Technische Universität München
Выходные знания, умения, навыки
After successful participation of this module, students will be able to 1.) understand the flight principles of quadrotors and their application potential, 2.) specify the pose of objects in 3D space and to perform calculations between them (e.g., compute the relative motion), 3.) explain the principles of Bayesian state estimation, 4.) implement and apply an extended Kalman filter (EKF), and to select appropriate parameters for it, 5.) implement and apply a PID controller for state control, and to fine tune its parameters, 6.) understand and explain the principles of visual motion estimation and 3D mapping
Входной тест
Формирование групп по уровню подготовленности
Присутствие преподавателей
Присутствие тьюторов
Присутствие фасилитаторов
Форма представления учебных материалов
тексты, мультимедиа, презентации, контрольный опросник
Наличие обратной связи в материалах
Наличие совместного обучения
Наличие практических занятий
курсовые, проекты
Наличие форумов, дискуссий
Наличие вебинаров, видеоконференций
Наличие неформального общения, meetup
Интеграция с LMS
Учебная аналитика
Наличие сертификации
Виды сертификации
edX Honor Code Certificate, edX Verified Certificate
Наличие временных границ
8 (недели)
Тип занятий (синхронность)
Виды оценивания
Возможность формирования собственной траектории, индивидуализации на курсе
Операционные системы
Windows, Mac, Linux
Поддерживаемые браузеры
All standard browsers (Safari, Firefox, Chrome, Internet Explorer)
Поддержка лиц с ограниченными возможностями